Ejercicio: Sea la matriz \(A=\begin{bmatrix}4 & 2 & 0 & 0\\ 3 & 3 & 0 & 0\\ 0 & 0 & 2 & 5\\ 0 & 0 & 0 & 2\end{bmatrix}\) y v el autovector unitario asociado a su mayor autovalor. ¿Cuál es la distancia de v a [1,3,6,9]?
Ejercicio: Sea la matriz \(A=\begin{bmatrix}4 & 1 & 0 & 1\\ 2 & 3 & 0 & 1\\ -2 & 1 & 2 & -3\\ 2 & -1 & 0 & 5\end{bmatrix}.\) Cuál de los siguientes vectores pertenece al ortogonal del subespacio propio del autovalor \(\lambda\), tal que \(m_a(\lambda)=2\):
A.)[2,1,0,1] B.)[3,0,2,1] C.)[-1,1,2,0]
Ejercicio: Sea la matriz \[A=\begin{bmatrix}4 & 1 & 0 & 1\\ 2 & 3 & 0 & 1\\ -2 & 1 & 2 & -3\\
2 & -1 & 0 & 5\end{bmatrix}.\] Cuál es la norma de la proyección de [1,3,6,9] sobre el ortogonal del subespacio propio del menor autovalor \(\lambda\), tal que \(m_a(\lambda)=1\).
Ejercicio: Dada la matriz \[A=\begin{bmatrix}4 & 1 & 0 & 1\\ 2 & 3 & 0 & 1\\ -2 & 1 & 2 & -3\\
2 & -1 & 0 & 5\end{bmatrix},\] ¿cuál es la norma de su polinomio característico?.
Una vez obtenido el polinomio característico, determinamos su norma. Recordemos que el polinomio característico pertenece al espacio vectorial \(\mathbb{R}_4[x]\), y en él definimos el producto escalar habitual como \[\int_0^1p(x)q(x)\ dx\] para \(p(x),q(x)\in\mathbb{R}_4[x]\). Por tanto, la norma que buscamos será:
(%i4)
fpprintprec:4$ float(sqrt(integrate(p^2,x,0,1)));
\[52.79\]
Ejercicio: Sea el subespacio vectorial de \(S\subset\mathbb{R}^5\) generado por los vectores \(\vec{u}\)(-11,-3,3,5,-1), \(\vec{v}\)(7,2,-2,-3,1) y \(\vec{w}\)(-9,-2,2,5,1) y \(\vec{x}\)(0,-1,1,-2,0). ¿Cuál es la \(\textbf{dim}(S^\perp)\)?
Ejercicio: Sea \(S=\{[[3a+2b,-2a-b],[b,a]]\in \mathcal{M}_2(\mathbb{R})\}\). ¿Cuál es la \(\|\textbf{proy}_S([[-1,0],[2,1]])\|\)?
Ejemplo: Sea \(\pi:\{(x,y,z,t)\in\mathbb{R}^4;\ 2x+3y-z=0,\ y+2z-t=0\}\). Determinar la norma de la proyección de [0,2,1,-1] sobre \(S^\bot\).
Ejemplo: Sea \(S=\{[[3a+2b,-2a-b+c],[b+2c,a-c]]\in \mathcal{M}_2(\mathbb{R})\}\), \(A\) y \(B\) las proyecciones sobre \(S\) y su ortogonal, respectivamente, de la matriz [[-1,0],[2,1]], ¿cuál es el valor \(\|AB\|\)?
Ejercicio: Sea \[A=\begin{bmatrix}-1 & 4 & 3\\ 1 & -2 & 0\\ 1 & -2 & 2\\ 1 & 0 & 1\end{bmatrix}.\] Si \(v:[-1,2,3]\), \(u:[-1,2,3,4]\) y \(L\) es la pseudoinversa de A, ¿cuánto es \(v.L.u^t\)?
if (rank(A)=3) then ( print(«tiene pseudoinversa por la izquierda»), L:invert(transpose(A).A).transpose(A), print(L) )else(print(«no tiene pseudoinversa por la izquierda»))$
Dado \(\mathbf {A} \in M_{n\times n}(\mathbb {K} )\), una matriz cuadrada con valores sobre un cuerpo \(\mathbb {K}\), decimos que \(\mathbf{A}\) es diagonalizable si, y sólo si, \(\mathbf{A}\) se puede descomponer de…
El pasado día vimos que para calcular los valores propios o autovalores necesitamos el polinomio característico. Ejercicio: Determinar los autovalores de la matriz \[\begin{bmatrix}1 & 1 & 0\\ 2 & 0 &…
Autovalores Denominamos esta parte autovectores y autovalores, también conocidos como vectores y valores propios de una matriz. Su definición es simple: Dada una matriz, \(A\in\mathcal{C}_n(\mathbb{K})\), real o compleja, cuerpos que trataremos, decimos…
Suma e intersección de subespacios Ejemplo: Sean los subespacios vectoriales \(S=\textbf{Gen}\{[[1,2],[2,1]],\) \([[0,-1],[1,1]]\}\) \(\in\mathcal{M}_2(\mathbb{R})\) y \(T=\textbf{Gen}\{[[-1,0],[3,-1]],\)\([[1,9],[9,-2]]\}\in\mathcal{M}_2(\mathbb{R})\). Determinar las ecuaciones implícitas de \(S\cap T\). Solución: Ejemplo: Dados los subespacios anteriores, ¿cuáles son las sumas(en…
La Factorización QR (o Descomposición QR) es un proceso por el cual una matriz \(A\) se expresa como el producto de dos matrices especiales: una matriz ortogonal \(Q\) y una matriz triangular…
Aplicaciones y matrices ortogonales Definimos las aplicaciones ortogonales a las aplicaciones de un espacio vectorial con producto escalar \((\mathcal{E},\bullet)\) que conservan el producto escalar; es decir, \(f:\mathcal{E}\to \mathcal{E}\), es ortogonal si \[f(\vec{x})\bullet…
Abordemos una de los procesos más importantes en este tema: Ejemplo: Dar una base ortogonal de la variedad \(S=\left\{\begin{bmatrix}1&2\\ 0& -1\end{bmatrix}+\left.\begin{bmatrix}a+b&3a-b\\ b& -a\end{bmatrix}\right|a,b\in\mathbb{R}\right\}\) Solución: Ejemplo: Cuál sería la traza de la matriz…
El pasado día veíamos que cuando \(S\) era un subespacio vectorial entonces \[\mathcal{E}=S\oplus S^{\bot}\] Esto implica que para todo vector \(\vec{v}\in \mathcal{E}\) existirán dos únicos vectores \(\vec{u}\in S\) y \(\vec{w}\in S^{\bot}\), tales…
Si tenemos un espacio vectorial euclídeo de dimensión finita, \(\mathcal{E}\), definimos el complemento ortogonal (a veces simplemente ortogonal) de un subespacio \(S\) de \(\mathcal{E}\) a \[S^\bot=\{\vec{v}\in \mathcal{E}|\;\vec{v}\bullet\vec{u}=0\,\forall \vec{u}\in S\}\] Proposición. Si \(S\subset…