ALG: Proyección ortogonal

El pasado día veíamos que cuando $S$ era un subespacio vectorial entonces $$\mathcal{E}=S\oplus S^{\bot}$$

Esto implica que para todo vector $\vec{v}\in \mathcal{E}$ existirán dos únicos vectores $\vec{u}\in S$ y $\vec{w}\in S^{\bot}$, tales que $$\vec{v}=\vec{u}+\vec{w}.$$

Estos vectores $\vec{u}$ o $\vec{w}$ son lo que llamamos proyecciones ortogonales de $\vec{v}$ sobre $S$ o $S^{\bot}$ respectivamente.

La definición clásica nos dice que si $S\subset \mathcal{E}$, un subespacio vectorial de un espacio euclídeo, para nuestros casos finitamente generado, llamamos proyección ortogonal del vector $\vec{v}$ sobre el subespacio $S$, al único vector $\vec{u}\in S$ talque $\vec{v}-\vec{u}\in S^{\bot}$.

A la aplicación $proy_S:\mathcal{E}\to S$ que a cada vector de $\mathcal{E}$ le hace corresponder su proyección ortogonal sobre $S$, se le denomina del mismo modo: proyección ortogonal.

Veamos un método para calcular la proyección ortogonal. Primero empezamos con la proyección sobre un vector. Si $S=<\vec{s}>$; es decir, es una recta, entonces $$proy_\vec{s}(\vec{v})=\frac{\vec{v}\bullet\vec{s}}{\parallel\vec{s}\parallel^2}\vec{s}.$$

Extenderlo a cualquier subespacio es sencillo, solo necesitamos una base ortogonal del subespacio: Sea $\{\vec{u}_1,\vec{u}_1,\ldots,\vec{u}_m\}$ una base ortogonal de $S$, entonces
$$proy_S(\vec{v})=\sum_{i=1}^m\frac{\vec{v}\bullet\vec{u}_i}{\parallel\vec{u}_i\parallel^2}\vec{u}_i.$$
Si además la base es ortonormal la expresión se reduce mucho:
$$proy_S(\vec{v})=(\vec{v}\bullet\vec{u}_i)\vec{u}_1+(\vec{v}\bullet\vec{u}_2)\vec{u}_2+\ldots+(\vec{v}\bullet\vec{u}_m)\vec{u}_m.$$

El propósito es determinar dado un subespacio vectorial $S\subset\mathbb{R}^n$ y un vector, o punto, $\vec{v}\in\mathbb{R}^n$, minimizar la distancia de $\vec{v}$ a cualquier $\vec{s}\in S$. Para conseguirlo utilizamos el siguiente resultado:

Teorema: Sea $S\subset\mathbb{R}^n$ un sube.v., $\vec{v}\in\mathbb{R}^n$ y $\vec{s}\in S$, son equivalentes

  1. $\vec{s}\in S$ es la proyección ortogonal de $\vec{v}$ sobre $S$, $proy_S(\vec{v})$; es decir, $\vec{v}-\vec{s}\in S^{\bot}$
  2. $\vec{s}\in S$ es la mejor aproximación de $\vec{v}$ sobre $S$; es decir,$\parallel \vec{v}-\vec{s}\parallel\leq \parallel \vec{v}-\vec{w}\parallel\,\forall \vec{w}\in S$

En ejemplo lo podéis ver el la deducción de la distancia entre un punto $P(x_0,y_0)$ y la recta $r:ax+by+c=0$ que viene dada por la fórmula $$d(P,r)=\frac{ax_0+by_0+c}{\sqrt{a^2+b^2}}$$
En este enlace está la demostración Proyección Ortogonal. Ej.1

Ejercicio: Sea $\pi:2x+3y-z=0$ un plano en $\mathbb{R}^3$, entonces
a) $\pi^\bot=<(2,3,-1)>$
b) $\pi^\bot=<(1,0,1)>$
c) $\pi^\bot=<(4,2,3)>$

This entry was written by admin , posted on miércoles diciembre 04 2019at 01:12 pm , filed under Álgebra Lineal . Bookmark the permalink . Post a comment below or leave a trackback: Trackback URL.

Comments are closed.