ALG: Matriz asociada a una aplicación lineal

Dada una aplicación lineal, $f:V\to W$, entre dos espacios vectoriales definimos la matriz asociada de la aplicación respecto de una base $B_V\subseteq V$ como la matriz cuyas columnas son las coordendas respecto de otra base $B_W\subseteq W$ de las imágenes de los vectores de $B_V$; es decir, si $B_V=\{\vec{v}_1,\ldots,\vec{v}_n\}$, $B_W=\{\vec{w}_1,\ldots,\vec{w}_m\}$, y
$$
\begin{matrix}
f(\vec{v}_1)=k_{11}\vec{w}_1+k_{21}\vec{w}_2+k_{31}\vec{w}_3+\ldots+k_{m1}\vec{w}_m;\\
f(\vec{v}_2)=k_{12}\vec{w}_1+k_{22}\vec{w}_2+k_{32}\vec{w}_3+\ldots+k_{m2}\vec{w}_m;\\
f(\vec{v}_3)=k_{13}\vec{w}_1+k_{23}\vec{w}_2+k_{33}\vec{w}_3+\ldots+k_{m3}\vec{w}_m;\\
\vdots \quad \vdots \quad \vdots\\
f(\vec{v}_n)=k_{1n}\vec{w}_1+k_{2n}\vec{w}_2+k_{3n}\vec{w}_n+\ldots+k_{mn}\vec{w}_m;
\end{matrix}
$$
llamamos matriz asociada de $f$, a la matriz
$$
M_f=\begin{pmatrix}
k_{11} & k_{12} & k_{13} &\ldots & k_{1m}\\
k_{21} & k_{22} & k_{23} &\ldots & k_{2m}\\
k_{31} & k_{32} & k_{33} &\ldots & k_{3m}\\
\vdots & \vdots & \vdots & \ldots & \vdots \\
k_{n1} & k_{n2} & k_{n3} &\ldots & k_{nm}\\
\end{pmatrix}
$$

Así vemos como una matriz puede representar una aplicación lineal. De hecho podemos establecer una aplicación entre el conjunto de aplicaciones lineales entre dos $\mathbb{K}$-espacios vectoriales $V$ y $W$, de dimensiones $n$ y $m$ (respectivamente) y el espacio vectorial de las matrices $M_{m\times n}(\mathbb{K})$ que sea un isomorfismo de espacios vectoriales; es decir, una aplicación lineal biyectiva. Esto nos equipara las operaciones con aplicaciones a las operaciones con sus matrices asociadas.

Sabemos que si $M_f$ es la matriz asociada a la aplicación lineal $f:V\to W$, entonces
$$f(v_1,v_2,\ldots,v_n)=(w_1,w_2,\ldots,w_m)\Leftrightarrow M_f \begin{pmatrix}v_1\\v_2\\ \vdots\\v_n\end{pmatrix}=\begin{pmatrix}w_1\\w_2\\ \vdots\\w_n\end{pmatrix}.$$

Esto nos permite deducir propiedades de la aplicación con sus correspondientes en la matriz. Por ejemplo, una aplicación lineal entre dos espacios vectoriales de la misma dimensión es un isomorfismo si, y solo si, su matriz asociada es regular.

Así, podemos considerar la matriz asociada a una aplicación lineal, $f:V\to W$, entre dos espacios vectoriales respecto de una base $B_V\subseteq V$ como la matriz cuyas columnas son las coordenadas respecto de otra base $B_W\subseteq W$ de las imágenes de los vectores de $B_V$. ¿Y si cambiamos las bases? Es decir, si tengo nuevas bases $B’_V$ y $B’_W$, y deseo encontrar la relación entre la matriz asociada aplicación $M_{f_{B_VB_W}}$, y la matriz $M_{f_{B’_VB’_W}}$. Esa relación nos la ofrece el siguiente gráfico:

cambio_base_apli

En este diagrama $A=M_{f_{B_VB_W}}$ y $C=M_{f_{B’_VB’_W}}$ es la matriz que desconocemos y buscamos. $P=M_{B’_VB_V}$ es la matriz del cambio de base de $B’_V$ a $B_V$ y $Q=M_{B’_WB_W}$. Así la matriz que buscamos es $$C=Q^{-1}\,A\,P.$$

Como habitualmente tratamos los espacios vectoriales $\mathbb{R}^n$ (recordad que todo espacio vectorial finitamente generado, de dimensión $n$, es isomorfo a $\mathbb{R}^n$), este gráfico se representaría como

matriz_aplic_base

donde $E_n$ y $E_m$ son las bases canónicas respectivas.

Ejercicio: Dada la aplicación lineal entre los polinomios de grado 3 o menos, que a cada polinomio le hace corresponder f(p)=p’-p. Calcular su matriz asociada respecto de la base $\{1,1-x,1-x^2,1-x^3\}$
This entry was written by admin , posted on miércoles noviembre 29 2017at 09:11 am , filed under Álgebra Lineal . Bookmark the permalink . Post a comment below or leave a trackback: Trackback URL.

Deja un comentario

XHTML: You can use these tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>