ALG: Intersección, incidencia y paralelismo

En este día hemos tratado la posición relativa de dos variedades afines: $L_1=P+C_1$ y $L_2=Q+C_2$. Diremos que se cortan si el conjunto $L_1\cap L_2$ no es vacío. Si $L_1\cap L_2=\phi$; es decir, si no se cortan, puede ocurrir que $C_1\subseteq C_2$ (o $C_2\subseteq C_1$ ) en cuyo caso se dice que son paralelas; en caso […]

Posted in: Álgebra Lineal by admin No Comments

ALG: Teorema de Rouché-Fröbenius

Recordad que todo sistemas de ecuaciones los podemos formular mediante una ecuación matricial $$AX=B,$$ donde $A$ es la matriz de coeficiente y $B$ la matriz de términos independientes. Llamamos matriz ampliada del sistema a la matriz que concatena $A$ y$ B$, ($A|B$) . El Teorema de Rouché-Fröbenius nos afirma que Existen soluciones para el sistema […]

Posted in: Álgebra Lineal by admin No Comments

EFM: Sistemas con autovalores complejos

Por último tenemos que la solución de $p_A(\lambda)=0$ sea compleja; es decir, $\lambda=\alpha\pm \beta i$, en ese caso la solución general será de la forma $$X=c_1\vec{v}e^{\lambda t}+c_2\bar{\vec{v}}e^{\bar{\lambda} t},$$ donde $\bar{\lambda}$ es el conjugado de $\lambda$ y $\bar{\vec{v}}$ es el vector conjugado del vector propio $\vec{v}$. Esta forma también se puede expresar utilizando los senos y […]

ALG: Variedades y Sistemas de Ecuaciones

Ampliamos las definiciones de variedades lineales que, en muchos casos, las equiparamos con los subespacios vectoriales, aunque no tienen por que serlos, a $\mathbb{R}^n$ Las variedades lineales nos dan pie para definir las ecuaciones paramétricas e implícitas que las identifican. Además hemos introducido el espacio afín y con él la variedad afín, una forma de […]

Posted in: Álgebra Lineal by admin No Comments

ALG: Producto escalar, norma, producto vectorial y mixto

Hoy hemos trabajado con la definición del producto escalar y norma en $\mathbb{R}^2$ y $\mathbb{R}^3$, aunque por extensión se puede hacer para $\mathbb{R}^n$. Estas definiciones nos dan pie a definir el ángulo entre dos vectores y el concepto de perpendicularidad. Además definimos el producto vectorial de dos vectores no nulos de $\mathbb{R}^3$, estudiando propiedades que […]

Posted in: Álgebra Lineal by admin No Comments

ALG: el plano afín $\mathbb{R}^2$ y el espacio afín $\mathbb{R}^3$

Hoy comenzamos intentando definir un espacio donde podamos fijar los vectores de $\mathbb{R}^2$ o $\mathbb{R}^3$ de forma que en vez de vectores libres tengamos vectores fijos. Eso se conseguirá en el espacio afín. Podemos definir el plano afín $\mathbb{R}^2$ como el conjunto $\mathbb{R}^2$, considerado como puntos en el plano cartesiano, y el conjunto $\mathbb{R}^2$, como […]

Posted in: Álgebra Lineal by admin No Comments

EFM: Sistemas con autovalores dobles

Recordad que llevamos visto cuando todos los autovalores son distintos. Para los demás casos, empezaremos con $A\in\mathcal{M}_2(\mathbb{R})$, de este modo el polinómio característico de esta matriz será $p_A(\lambda)\in\mathbb{R}_2[X]$. Las soluciones dependerán de los valores propios que nos de la ecuación característica $p_A(\lambda)=0$. Si los valores propios son distintos estamos en el caso general, visto anteriormente. […]

EFM: Sistema de ED

Hoy comenzamos el tema 6, dedicado a los sistemas de ecuaciones diferenciales. En general un sistema como $$X’=AX+B,$$ escrito en forma matricial. A y B son una matrices de funciones, aunque nosotros nos centraremos cuando A sea una matriz de coeficientes constantes y reales. Para tratar los Sistemas de ED necesitamos repasar el cálculo de […]

EFM: Principio de superposición

Terminamos este apartado estudiando el caso $$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=\sum_{i=1}^n f_i(x),$$ donde cada $f_i(x)$ es alguna de las funciones dadas en los casos anteriores. Este caso cumple el Teorema de superposición: Teorema. Sean $y_1$, $y_2$, …, $y_k$ soluciones de la ecuación diferencial lineal homogénea de orden $n$, $F(x,y,y’,…,y^{(n)})=0$, en un intervalo $I$, entonces la combinación lineal $$y=c_1y_1, c_2 […]

EFM: No homogénea con funciones trigonométricas

El siguiente caso trata cuando afrontamos con funciones trigonométricas $$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=P_1(x)\, \cos{rx}+P_2(x)\, \sin{rx},$$ en cuyo caso la solución particular será de la forma $$y_p=x^s(Q_1(x)\, \cos{rx}+Q_2(x)\, \sin{rx})$$ Quedaría ver si ocurre $$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=(P_1(x)\, \cos{bx}+P_2(x)\, \sin{bx})e^{ax},$$ que en tal caso la solución particular dependería de $a+bi$, y sería de la forma $$y_p=x^s(Q_1(x)\, \cos{bx}+Q_2(x)\, \sin{bx})e^{ax}$$ Ejercicio: Resolver $y”+y= \sin 2x$, […]